3.363 \(\int \frac{a+b x^2}{x \sqrt{-c+d x} \sqrt{c+d x}} \, dx\)

Optimal. Leaf size=56 \[ \frac{a \tan ^{-1}\left (\frac{\sqrt{d x-c} \sqrt{c+d x}}{c}\right )}{c}+\frac{b \sqrt{d x-c} \sqrt{c+d x}}{d^2} \]

[Out]

(b*Sqrt[-c + d*x]*Sqrt[c + d*x])/d^2 + (a*ArcTan[(Sqrt[-c + d*x]*Sqrt[c + d*x])/c])/c

________________________________________________________________________________________

Rubi [A]  time = 0.0687923, antiderivative size = 56, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 31, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.097, Rules used = {460, 92, 205} \[ \frac{a \tan ^{-1}\left (\frac{\sqrt{d x-c} \sqrt{c+d x}}{c}\right )}{c}+\frac{b \sqrt{d x-c} \sqrt{c+d x}}{d^2} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x^2)/(x*Sqrt[-c + d*x]*Sqrt[c + d*x]),x]

[Out]

(b*Sqrt[-c + d*x]*Sqrt[c + d*x])/d^2 + (a*ArcTan[(Sqrt[-c + d*x]*Sqrt[c + d*x])/c])/c

Rule 460

Int[((e_.)*(x_))^(m_.)*((a1_) + (b1_.)*(x_)^(non2_.))^(p_.)*((a2_) + (b2_.)*(x_)^(non2_.))^(p_.)*((c_) + (d_.)
*(x_)^(n_)), x_Symbol] :> Simp[(d*(e*x)^(m + 1)*(a1 + b1*x^(n/2))^(p + 1)*(a2 + b2*x^(n/2))^(p + 1))/(b1*b2*e*
(m + n*(p + 1) + 1)), x] - Dist[(a1*a2*d*(m + 1) - b1*b2*c*(m + n*(p + 1) + 1))/(b1*b2*(m + n*(p + 1) + 1)), I
nt[(e*x)^m*(a1 + b1*x^(n/2))^p*(a2 + b2*x^(n/2))^p, x], x] /; FreeQ[{a1, b1, a2, b2, c, d, e, m, n, p}, x] &&
EqQ[non2, n/2] && EqQ[a2*b1 + a1*b2, 0] && NeQ[m + n*(p + 1) + 1, 0]

Rule 92

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))), x_Symbol] :> Dist[b*f, Subst[I
nt[1/(d*(b*e - a*f)^2 + b*f^2*x^2), x], x, Sqrt[a + b*x]*Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] &&
 EqQ[2*b*d*e - f*(b*c + a*d), 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{a+b x^2}{x \sqrt{-c+d x} \sqrt{c+d x}} \, dx &=\frac{b \sqrt{-c+d x} \sqrt{c+d x}}{d^2}+a \int \frac{1}{x \sqrt{-c+d x} \sqrt{c+d x}} \, dx\\ &=\frac{b \sqrt{-c+d x} \sqrt{c+d x}}{d^2}+(a d) \operatorname{Subst}\left (\int \frac{1}{c^2 d+d x^2} \, dx,x,\sqrt{-c+d x} \sqrt{c+d x}\right )\\ &=\frac{b \sqrt{-c+d x} \sqrt{c+d x}}{d^2}+\frac{a \tan ^{-1}\left (\frac{\sqrt{-c+d x} \sqrt{c+d x}}{c}\right )}{c}\\ \end{align*}

Mathematica [A]  time = 0.0324644, size = 87, normalized size = 1.55 \[ \frac{a d^2 \sqrt{d^2 x^2-c^2} \tan ^{-1}\left (\frac{\sqrt{d^2 x^2-c^2}}{c}\right )-b c^3+b c d^2 x^2}{c d^2 \sqrt{d x-c} \sqrt{c+d x}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^2)/(x*Sqrt[-c + d*x]*Sqrt[c + d*x]),x]

[Out]

(-(b*c^3) + b*c*d^2*x^2 + a*d^2*Sqrt[-c^2 + d^2*x^2]*ArcTan[Sqrt[-c^2 + d^2*x^2]/c])/(c*d^2*Sqrt[-c + d*x]*Sqr
t[c + d*x])

________________________________________________________________________________________

Maple [B]  time = 0.019, size = 108, normalized size = 1.9 \begin{align*}{\frac{1}{{d}^{2}} \left ( -\ln \left ( -2\,{\frac{{c}^{2}-\sqrt{-{c}^{2}}\sqrt{{d}^{2}{x}^{2}-{c}^{2}}}{x}} \right ) a{d}^{2}+b\sqrt{-{c}^{2}}\sqrt{{d}^{2}{x}^{2}-{c}^{2}} \right ) \sqrt{dx-c}\sqrt{dx+c}{\frac{1}{\sqrt{-{c}^{2}}}}{\frac{1}{\sqrt{{d}^{2}{x}^{2}-{c}^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)/x/(d*x-c)^(1/2)/(d*x+c)^(1/2),x)

[Out]

(-ln(-2*(c^2-(-c^2)^(1/2)*(d^2*x^2-c^2)^(1/2))/x)*a*d^2+b*(-c^2)^(1/2)*(d^2*x^2-c^2)^(1/2))*(d*x-c)^(1/2)*(d*x
+c)^(1/2)/(d^2*x^2-c^2)^(1/2)/d^2/(-c^2)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)/x/(d*x-c)^(1/2)/(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.5188, size = 135, normalized size = 2.41 \begin{align*} \frac{2 \, a d^{2} \arctan \left (-\frac{d x - \sqrt{d x + c} \sqrt{d x - c}}{c}\right ) + \sqrt{d x + c} \sqrt{d x - c} b c}{c d^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)/x/(d*x-c)^(1/2)/(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

(2*a*d^2*arctan(-(d*x - sqrt(d*x + c)*sqrt(d*x - c))/c) + sqrt(d*x + c)*sqrt(d*x - c)*b*c)/(c*d^2)

________________________________________________________________________________________

Sympy [C]  time = 21.1566, size = 178, normalized size = 3.18 \begin{align*} - \frac{a{G_{6, 6}^{5, 3}\left (\begin{matrix} \frac{3}{4}, \frac{5}{4}, 1 & 1, 1, \frac{3}{2} \\\frac{1}{2}, \frac{3}{4}, 1, \frac{5}{4}, \frac{3}{2} & 0 \end{matrix} \middle |{\frac{c^{2}}{d^{2} x^{2}}} \right )}}{4 \pi ^{\frac{3}{2}} c} + \frac{i a{G_{6, 6}^{2, 6}\left (\begin{matrix} 0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1, 1 & \\\frac{1}{4}, \frac{3}{4} & 0, \frac{1}{2}, \frac{1}{2}, 0 \end{matrix} \middle |{\frac{c^{2} e^{2 i \pi }}{d^{2} x^{2}}} \right )}}{4 \pi ^{\frac{3}{2}} c} + \frac{b c{G_{6, 6}^{6, 2}\left (\begin{matrix} - \frac{1}{4}, \frac{1}{4} & 0, 0, \frac{1}{2}, 1 \\- \frac{1}{2}, - \frac{1}{4}, 0, \frac{1}{4}, \frac{1}{2}, 0 & \end{matrix} \middle |{\frac{c^{2}}{d^{2} x^{2}}} \right )}}{4 \pi ^{\frac{3}{2}} d^{2}} + \frac{i b c{G_{6, 6}^{2, 6}\left (\begin{matrix} -1, - \frac{3}{4}, - \frac{1}{2}, - \frac{1}{4}, 0, 1 & \\- \frac{3}{4}, - \frac{1}{4} & -1, - \frac{1}{2}, - \frac{1}{2}, 0 \end{matrix} \middle |{\frac{c^{2} e^{2 i \pi }}{d^{2} x^{2}}} \right )}}{4 \pi ^{\frac{3}{2}} d^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)/x/(d*x-c)**(1/2)/(d*x+c)**(1/2),x)

[Out]

-a*meijerg(((3/4, 5/4, 1), (1, 1, 3/2)), ((1/2, 3/4, 1, 5/4, 3/2), (0,)), c**2/(d**2*x**2))/(4*pi**(3/2)*c) +
I*a*meijerg(((0, 1/4, 1/2, 3/4, 1, 1), ()), ((1/4, 3/4), (0, 1/2, 1/2, 0)), c**2*exp_polar(2*I*pi)/(d**2*x**2)
)/(4*pi**(3/2)*c) + b*c*meijerg(((-1/4, 1/4), (0, 0, 1/2, 1)), ((-1/2, -1/4, 0, 1/4, 1/2, 0), ()), c**2/(d**2*
x**2))/(4*pi**(3/2)*d**2) + I*b*c*meijerg(((-1, -3/4, -1/2, -1/4, 0, 1), ()), ((-3/4, -1/4), (-1, -1/2, -1/2,
0)), c**2*exp_polar(2*I*pi)/(d**2*x**2))/(4*pi**(3/2)*d**2)

________________________________________________________________________________________

Giac [A]  time = 1.16348, size = 74, normalized size = 1.32 \begin{align*} -\frac{2 \, a \arctan \left (\frac{{\left (\sqrt{d x + c} - \sqrt{d x - c}\right )}^{2}}{2 \, c}\right )}{c} + \frac{\sqrt{d x + c} \sqrt{d x - c} b}{d^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)/x/(d*x-c)^(1/2)/(d*x+c)^(1/2),x, algorithm="giac")

[Out]

-2*a*arctan(1/2*(sqrt(d*x + c) - sqrt(d*x - c))^2/c)/c + sqrt(d*x + c)*sqrt(d*x - c)*b/d^2